

Technische Information

Pneumatische Abflussregelung

Pneumatisch angetriebene Regelorgane zur präzisen Mengenbegrenzung von Abwasser und Regenwasser

Impressum

STEBATEC AG Mattenstrasse 6a CH-2555 Brügg

Telefon 032 366 95 95
E-Mail <u>info@stebatec.ch</u>
Web <u>http://www.stebatec.ch</u>

Jede Vervielfältigung dieser «Technischen Informationen» bedarf der Zustimmung der Firma STEBATEC AG. Alle Rechte an dieser Dokumentation und an den Geräten liegen bei STEBATEC AG in Brügg / Schweiz.

Änderungsverzeichnis

Datum	Version	Beschreibung	Autor
12.05.2023	V1.0	Erste Version	Patrick Favri

Inhaltsverzeichnis

1	Einleitung	5
2	Gerätevarianten	6
3	Produktebeschreibung	7
3.1	Kurzbeschrieb	7
3.2	Einsatzbereiche	8
3.3	Betriebsarten	8
3.4	Vollfüllregelung	10
3.4.1	Beispiel MID mit QV	11
3.5	Mengenregelung	12
3.6	Spülstoss	12
3.7	Geschiebeableitung	13
3.8	Teilfüllung	13
3.9	Handbetrieb	13
3.10	Fernbetrieb	13
3.11	Eigenkontrolle	13
3.12	Kompressor, Entwässerung und Überwachung	14
4	Bauformen	15
4.1	Regelklappe vollgefüllt	15
4.2	Regelklappe teilgefüllt	16
4.3	Quetschventil vollgefüllt	17
4.4	Quetschventil teilgefüllt	17
4.5	Nass aufgestellt, offene Bauweise	18
4.6	Trocken aufgestellt, geschlossene Bauweise	19
5	Druckluft	20
5.1	STEBair Kompressoren	20
5.2	Abgesetzte Regeleinheit	21
6	Lieferumfang	22
6.1	Optional	22
7	Technische Daten	23
8	Mögliche Baugrössen	24
8.1	Teilgefüllte nass aufgestellte Bauweise	24
8.2	Teilgefüllte trocken aufgestellte Bauweise	25
8.3	MID-gesteuerte pneumatische Abflussregelung mit Quetschventil	26

15	Tabellenverzeichnis	43
14	Abbildungsverzeichnis	42
13	Glossar	39
12.3	Notbetrieb bei Netzausfall und Gerätestörung	38
12.2	Notöffnung	37
12.1	Notdrosselung	36
12	Notfall	36
11.3	Aus- und Einbau	33
11.2	Kompressor	32
11.1.1	Reinigungsempfehlung	32
11.1	Reinigung	32
11	Wartung	32
10.2	Konfiguration	31
10.1	Erstinbetriebnahme	31
10	Installation und Inbetriebnahme	31
9.2.1	Normalzustand	30
9.2	Ansicht WEB Interface	30
9.1	Ansicht Touchpanel	29
9	HMI / Bedienung	29
8.5	LDM-gesteuerte pneumatische Abflussregelung mit Quetschventil	28
8.4	MID-gesteuerte pneumatische Abflussregelung	27

1 Einleitung

Achtung

Diese technischen Informationen sind kein Ersatz für die Bedienungsanleitung. Insbesondere fehlen die gemäss DIN EN 82079-1 (Erstellung von Nutzungsinformationen (Gebrauchsanleitungen) für Produkte) geforderten Warn- und Sicherheitshinweise, welche für die Installation, die Wartung und die Störungsbehebung vor Ort notwendig sind.

Tabelle 1: Kennzeichnung von Hinweisen

Diese technische Information ist eine Kurzfassung der Bedienungsanleitungen der pneumatischen Abflussregelung. Kontaktieren Sie STEBATEC, falls Sie die ausführlichen Bedienungsanleitungen, welche die notwendigen Warn- und Sicherheitshinweise sowie weitere Informationen enthalten, beziehen möchten.

2 Gerätevarianten

Die pneumatische Abflussregelung kann in vielen Varianten geliefert werden. Die Bauform und Funktionalitäten sind immer vom Einsatzbereich und den Kundenbedürfnissen abhängig.

In folgender Tabelle sind die Kurzbezeichnungen der Typen erläutert, da in der Anleitung meist nur noch die Abkürzungen verwendet werden.

Bezeichnung	Bedeutung
В	Balg
DS	Ausführung mit einer Drucksonde
ExZ2	ATEX-Ausführung Zone 2
ExZ1	ATEX-Ausführung Zone 1
gB	Geschlossene Bauweise
Н	Hebekissen
iR	im Rohr
LDM	Laufzeit-Differenz-Durchflussmessung
MID	Magnetisch-induktive Durchflussmessung
PNA	Pneumatische Abflussregelung
POR	Portable Durchflussmessung
QV	Quetschventil
RA	Ausführung mit Radar
RVA	Regelventil abgesetzt
SCH	Schere
STA	Stationär
TF	Teilgefüllt
VF	Vollgefüllt
Wö	Wartungsöffnung

Tabelle 2: Abkürzungen Gerätevarianten

3 Produktebeschreibung

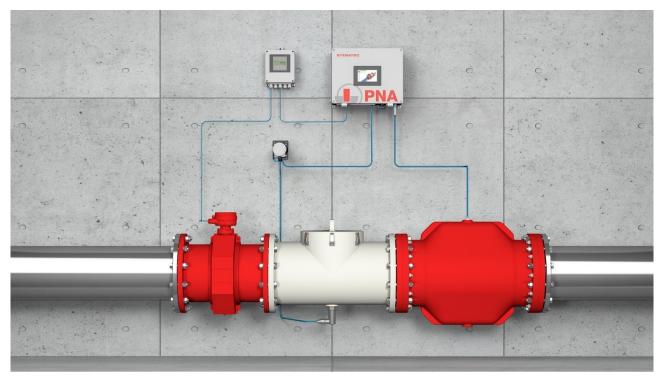


Abbildung 1: PNA mit MID und QV

3.1 Kurzbeschrieb

Die pneumatische Abflussregelung dient dazu, den Durchfluss von Wasser oder Abwasser zu messen und zu regeln.

Die pneumatische Abflussregelung besteht im Wesentlichen aus einer Durchflussmessung, einer Regeleinrichtung inklusive eines Kompressors und einem Steuerschrank.

Die Durchflussmessung kann mit Hilfe von MID (magnetisch-induktiver Durchflussmessung) oder LDM (Ultraschall-Laufzeit-Differenzmessung) erfolgen. Beide Systeme können teil- oder vollgefüllt betrieben werden, wobei für Teilfüllung das LDM-Verfahren und bei Vollfüllung die MID-Technik, aufgrund der jeweiligen Vorteile, eingesetzt werden sollten.

Als Nebeneffekt können die Durchflussmessungen auch für Kostenabrechnungen oder für die Untersuchung auf Fremdwasser eingesetzt werden.

Das System ist für Wasser, Abwasser und Rohabwasser geeignet. Mit Hilfe einer Einhängeadaption kann die pneumatische Abflussregelung einfach ein- und wieder ausgebaut werden.

Die pneumatische Abflussregelung besitzt die folgenden Merkmale:

- kann in teilgefüllten Rohren in der Wasser- und Abwasserindustrie eingesetzt werden
- kann für Nennweiten von DN 150 bis DN 1200 ausgeliefert werden
- besitzt eine hohe Widerstandsfähigkeit gegenüber Abrasion und Chemikalien
- muss nicht vor Ort kalibriert werden, da diese komplett werkseitig erfolgt

Die pneumatische Abflussregelung kann für die Durchflussregelung von folgenden Flüssigkeiten verwendet werden:

- Wasser
- Regenwasser
- Abwasser
- Rohabwasser
- Biologisch und chemisch belastete Abwässer

3.2 Einsatzbereiche

Die pneumatische Abflussregelung wird vor allem bei Bauwerken mit Speicherfunktion in Abwasserleitungen und -kanälen verwendet. Dabei soll vermieden werden, dass bei grossen Abwassermengen ein Teil der Abwässer in die Vorfluter entlastet werden muss. Falls also Starkregen auftritt, dann kann das mit dem Regen vermischte Abwasser in diesen Rückhaltebecken teilweise oder sogar vollständig zurückgehalten werden. Nach dem Regenereignis können dann die Abwässer nach und nach der Kläranlage zugeführt und dort gereinigt werden.

3.3 Betriebsarten

Die pneumatisch gesteuerte Klappe sorgt für die Vollfüllung des MID und drosselt die Durchflussmenge auf einen einstellbaren maximalen Wert. Mit dem LDM-Messverfahren wird keine Vollfüllung benötigt.

Die Regelklappe wird durch ein pneumatisches Druckkissen (oder Hebekissen) betätigt. Beim Aufblasen des Hebekissens schliesst die Klappe über einen Hebelarm. Im drucklosen Zustand bleibt die Klappe geöffnet. Dies dient zur Sicherheit, dass wenn der Kompressor defekt ist, kein Rückstau produziert wird.

Wird die pneumatische Abflussregelung mit einem Quetschventil ausgeliefert, wird für die Drosselung des Durchflusses der Strömungsquerschnitt mit Hilfe von zwei seitlich zudrückenden Blasen vermindert. Im drucklosen Zustand findet keine Drosselung durch die Blasen statt.

In der nachfolgenden Abbildung wird das Prinzip der Betriebszustände abgebildet, sofern die Betriebsart kein Chargenbetrieb ist:

Abbildung 2: Prinzip der Betriebsarten

Dabei müssen jedoch nicht alle Betriebszustände möglich sein. Der Übergang zwischen den Betriebsarten geschieht über Schwellenwerte des Flüssigkeitsniveaus oder des Durchflusses sowie mittels entsprechenden Verzögerungszeiten. Die Mengenregelung kann jedoch auch als Variante der Vollfüllung betrachtet werden, da diese aktiviert ist. Zusätzlich wird jedoch der Durchfluss auf denjenigen der Mengenregelung begrenzt. Als Effekt davon wird anstelle des Niveaus der Durchfluss (oder die Durchflussmenge) geregelt. Sobald der Durchfluss unter denjenigen des Grenzwerts der Mengenregelung fällt, jedoch die Umschaltbedingung in die

Teilfüllung noch nicht erfüllt ist, befindet sich die pneumatische Abflussregelung wiederum in der Betriebsart der Vollfüllung.

Im Chargenbetrieb wird die Flüssigkeit während einer gewissen Zeit zurückgehalten und anschliessend kontrolliert abgelassen.

Es existierten weiter zwei Möglichkeiten der Selbstreinigung: Der Spülstoss sowie die Geschiebeableitung. Der Spülstoss soll Ablagerung in der Röhre der pneumatischen Abflussregelung verhindern. Die Geschiebeableitung soll eine Blockierung der Regelklappe durch Geschiebe verhindern.

Schlussendlich kann die pneumatische Abflussregelung einerseits im Fernbetrieb und andererseits im Handbetrieb (oder in einer Kombination der beiden Zustände) betrieben werden.

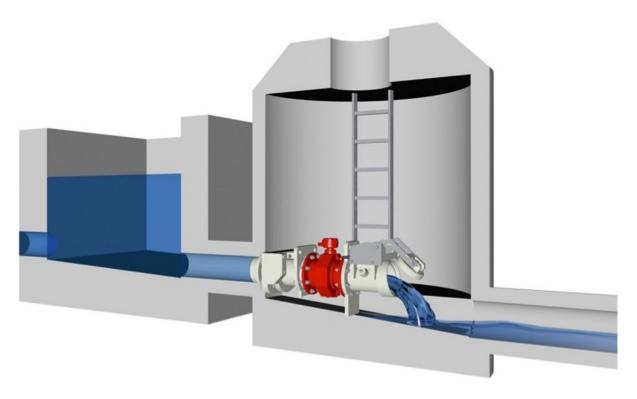


Abbildung 3: Beispielhafte Darstellung einer MID-gesteuerten Pneumatischen Abflussregelug (PNA)

3.4 Vollfüllregelung

Die Begriffe der «Vollfüllung» (VF) sowie der «Vollfüllregelung» (VR) werden als gleichbedeutend betrachtet.

Die Vollfüllregelung ist genau dann möglich, falls der Typ der Messung des Durchflusses nicht LDM (also «Ultraschall-Laufzeit-Differenzmessung) ist.

Falls die Vollfüllregelung möglich ist und die Drosselmenge infolge von Trockenwetter unterschritten wird, schaltet nach Ablauf einer entsprechenden Zeit die Regelung auf automatische Vollfüllung. Gesteuert durch das Signal der integrierten Drucksonde öffnet sich die Regelklappe nur so weit, dass der Messaufnehmer immer vollgefüllt ist. Der Vorteil der Vollfüllregelung besteht darin, dass der Messaufnehmer (magnetischinduktive Durchflussmessung für Vollfüllung) dadurch die höchste Messgenauigkeit erbringt.

In der nächsten Abbildung ist das Prinzip der Vollfüllregelung graphisch dargestellt. Die Regelung erfolgt in diesem Fall mit einer Regelklappe:

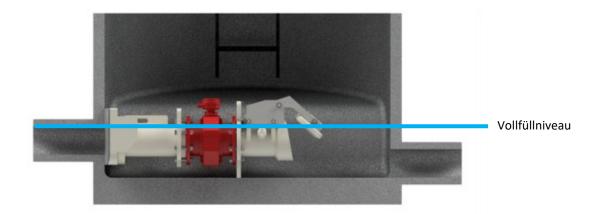
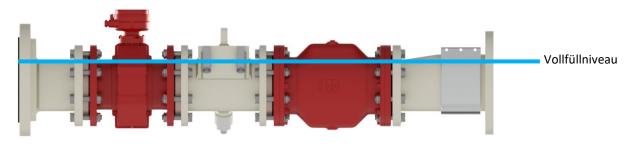



Abbildung 4: Vollfüllniveau MID

3.4.1 Beispiel MID mit QV

Bei einem System mit einem MID-Messsystem und einem Quetschventil als Regler Organ funktioniert die Vollfüllung wie folgt:

Quetschventil

Abbildung 5: Vollfüllniveau MID mit QV

Das Quetschventil regelt die Durchflussmenge dementsprechend, dass das Vollfüllniveau im Bereich des MID-Messsystems immer erreicht wird. Die Vollfüllung ist wichtig, dass die Messung präzise Daten erfassen kann.

Systemverhalten

- Die Klappe arbeitet stetig, um das Flüssigkeitsniveau auf Vollfüllung zu regeln
- Die gemessenen Werte Durchflussmessung sind gültig
- Es besteht das Risiko von Ablagerungen, da die Fliessgeschwindigkeit der Flüssigkeit permanent auf einen kleinen Wert gedrosselt wird
- Die Regelung erfolgt nach Niveau
- Spülstösse sind möglich
- Geschiebeableitungen sind möglich

3.5 Mengenregelung

Die kontinuierliche Mengenregelung wird durch die entsprechende Konfiguration aktiviert.

Ist die kontinuierliche Mengenregelung möglich und wird die parametrierte Drosselmenge überschritten, dann wird die Betriebsart nach Ablauf der entsprechenden Verzögerungszeit auf Mengenregelung umgeschaltet. Dabei wird die Regelung nach dem Signal der Durchflussmessung gesteuert. Die Mengenregelung begrenzt den Durchfluss entsprechend.

Systemverhalten

- Die Klappe arbeitet stetig
- Die gemessenen Werte Durchflussmessung sind gültig
- Bei einer korrekt dimensionierten Messung (Durchfluss [Q] nicht zu tief) sollte es kaum zu Ablagerungen kommen
- Die Regelung erfolgt nach Durchfluss
- Spülstösse sind nicht möglich
- Geschiebeableitungen sind möglich

3.6 Spülstoss

Spülstösse sind nur dann möglich, falls sie in den Voreinstellungen entsprechend freigegeben werden, ansonsten sind diese gesperrt. Zusätzlich darf die pneumatische Abflussregelung nicht für die Mengenregelung im Chargenbetrieb eingesetzt werden.

Spülstösse besitzen die folgenden Merkmale:

- Entfernen von Ablagerungen im Bereich der pneumatischen Abflussregelung
- Bis zu vier Mal pro Tag über fix einstellbare Zeiten ausführbar
- Manuell, über Fernbetrieb, auslösbar
- Automatisch auslösbar über Verstopfungsdetektion

Wird ein Spülstoss ausgeführt, dann wird als erstes die Klappe vollständig geschlossen. Die Aufstauung dauert entweder über die maximal eingestellt Stauzeit, oder, falls dieses Ereignis früher eintrifft, bis die Füllstandhöhe innerhalb des Messrohrs die maximale Stauhöhe überschreitet.

Nach Beenden der Aufstauung wir die Klappe vollständig geöffnet. Der Spülstoss wird beendet, falls das Füllstandniveau im Messrohr unter die minimale Stauhöhe fällt und die minimale Zeitdauer des Spülstosses erreicht ist.

Falls das Flüssigkeitsniveau dauerhaft grösser als die minimale Stauhöhe ist, wird der Spülstoss beendet, wenn die maximale Entleerungszeit verstrichen ist.

Der Spülstoss auch abgebrochen werden, falls der gemessene Durchfluss grösser als Sollwert des Durchflusses der Mengenregelung ist. Voraussetzung für diese Art der Beendigung des Spülstosses ist, dass die Mengenregelung nicht gesperrt ist.

3.7 Geschiebeableitung

Die Geschiebeableitung muss in den Voreinstellungen aktiviert sein, damit eine Blockierung der Regelklappe überprüft und diese aktiviert wird. Damit eine Geschiebeableitung ausgeführt werden kann, muss die Intervallzeit zwischen zwei Ableitungen verstrichen sein.

Die Geschiebeableitung wird durchgeführt, indem die Klappe kurzzeitig vollständig geöffnet wird, um eine allfällige Blockierung der Regelklappe zu beseitigen.

3.8 Teilfüllung

Die Begriffe der «Teilfüllung», «Teilfüllregelung» sowie «Teilfüllmodus» werden in dieser Bedienungsanleitung als gleichbedeutend betrachtet.

Bei Anlagen mit einer teilfüllfähigen Durchflussmessung wird der Teilfüllmodus dauerhaft aktiviert. Die Anlage schaltet bei Erreichen der Maximalmenge automatisch auf Mengenregelung um.

In der Ausführung mit einer magnetisch-induktiven Durchflussmessung (MID) hält die Regelklappe die Anlage automatisch vollgefüllt. Dies führt zu einem Grundeinstau in der vorangehenden Leitung. Der Teilfüllmodus ermöglicht nun, dass die Regelklappe bei Trockenwetter geöffnet bleibt und erst bei ansteigendem Wasserspiegel in den Vollfüll- und Mengenregelungs-Modus wechselt. Ohne Grundeinstau wird das Risiko von Ablagerungen im Kanalsystem verkleinert. Falls die MID später wieder für die Messung des Durchflusses verwendet werden soll, kann der Teilfüllmodus mit einem Klick einfach unterdrückt werden. Die Konfiguration des Verhaltens der pneumatischen Abflussregelung in Bezug auf die Teilfüllung und die Berechnung des Durchflusses wird in folgenden Kapiteln beschrieben, welche die Konfiguration der PNA abhandeln.

3.9 Handbetrieb

Der Handbetrieb ermöglicht eine Handbedienung der Klappe, beispielsweise zu Test- oder Fehlersuchzwecken

3.10 Fernbetrieb

Mittels Fernbetrieb kann die pneumatische Abflussregelung von extern bedient werden oder an andere Systeme automatisiert angeschlossen werden, beispielsweise für eine übergeordnete Regelung des Abflusses.

3.11 Eigenkontrolle

Die pneumatische Abflussregelung ist mit einer Eigenkontrolle ausgestattet. Mit deren Hilfe wird überprüft, ob diese korrekt arbeitet. Dabei werden die folgenden gemessenen Werte für die Eigenkontrolle verwendet:

- Durchfluss [l/s]
- Aufstauhöhe [mm]
- pneumatischer Regeldruck [mbar]

3.12 Kompressor, Entwässerung und Überwachung

Im Druckspeicher des Kompressors sammelt sich mit der Zeit Kondensat an. Die Entwässerung des Kompressors kann bis zu vier Mal pro Tag während einer einstellbaren Zeitdauer ausgeführt. Bei aktivierter Notstellung wird der Kondensat Ablass unterdrückt, damit der Druckspeicher möglichst lange den Druck halten kann.

Der Kompressor kann mit Hilfe einer Strommessung überwacht werden. Mit Hilfe der Überwachung kann die maximale Laufzeit des Kompressors und die minimale Pausenzeit des Kompressors überwacht werden. Diese Überwachung kann genutzt werden, um Lecks im Druckluftsystem oder eine «nervöse Regelung» detektieren zu können. Eine ungünstige Regeleinstellung verursacht einen unnötigen Verschleiss der Regeleinheit der pneumatischen Abflussregelung.

Elemente, welche beim Kompressor überwacht oder geregelt werden können:

- Entwässerung
- Laufzeitüberwachung
- Strommessung
- Spannungsüberwachung
- Abschaltverhalten bei Störung

4 Bauformen

Die pneumatisch gesteuerte Regelklappe sorgt gegebenenfalls für die Vollfüllung des Messaufnehmers und drosselt die Durchflussmenge auf einen einstellbaren maximalen Wert. Die Regelklappe wird pneumatisch angesteuert, der Vordruck definiert die Stellung der Drosselklappe. Im drucklosen Zustand öffnet sich die Regelklappe. In den folgenden Unterabschnitten werden die verschiedenen Bauweisen der pneumatischen Abflussregelung beschrieben.

4.1 Regelklappe vollgefüllt

Für alle Einbauorte, an denen die Drosselung des Zulaufstroms bis zur Vollfüllung im Zulaufrohr möglich und zulässig ist, kann die Durchflussmessung mittels MID (magnetisch-induktive Durchflussmessung) erfolgen. Hauptvorteile der MID-Messung sind die im Vergleich mit anderen Messverfahren geringen Systemkosten bei guter Messgenauigkeit sowie der robuste und weitgehend wartungsfreie Aufbau.

Durchflussmessung und -regelung am vollgefüllten Rohr bedingen bei geringen Durchflüssen eine geringe Fliessgeschwindigkeit. Dies begünstigt verstärkte Ablagerungen im Zulaufrohr bzw. -kanal.

Sofern bei geringen Durchflüssen keine genaue Durchflussregelung erforderlich ist, kann diesem Nachteil durch die Nutzung des teilgefüllten Betriebs begegnet werden. Dabei ist bei geringen Durchflüssen die Regelklappe bis zu einem vorgewählten Öffnungswinkel (eingestellt über den Kissendruck) geöffnet und die Flüssigkeit fliesst ungedrosselt ab. Bei Überschreiten eines vorgewählten Flüssigkeitsniveaus (Aufstauhöhe) im Rohr oder eines berechneten Durchflusswerts, erfolgt die Umschaltung in die Vollfüllregelung, sofern die entsprechende Verzögerungszeit abgelaufen ist. Überschreitet der gemessene Durchfluss den entsprechenden Wert der Mengenregelung, dann wird die Betriebsart der pneumatischen Abflussregelung auf Mengenregelung umgeschaltet. Entsprechend wird wieder auf Vollfüllung umgeschaltet, falls der gemessene Durchfluss unterhalb des Sollwerts der Mengenregelung fällt. Da die Mengenregelung als Variante der Vollfüllung betrachtet werden kann, wird das mechanische System durch einen schnellen Wechsel von Vollfüllung in Mengenregelung und wieder zurück nicht belastet.

Die Teilfüllregelung kann jederzeit über den entsprechenden Parameter unterdrückt werden.

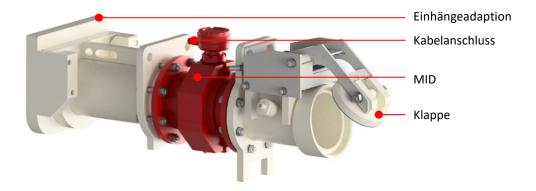


Abbildung 6: Vollgefüllte MID-gesteuerte Abflussregelung, Klappe offen

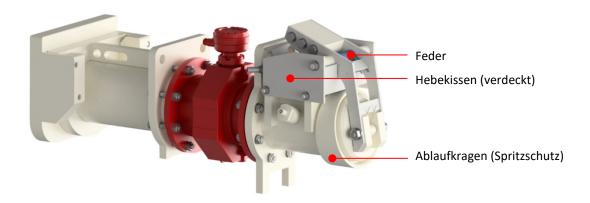


Abbildung 7: Vollgefüllte MID-gesteuerte Abflussregelung, Klappe geschlossen

4.2 Regelklappe teilgefüllt

Für die Durchflussmessung und -Regelung im teilgefüllten Kanal wird standardmässig ein Ultraschall – Laufzeit -Differenzmessungs- System (LDM) eingesetzt. Dieses System misst in mehreren (üblicherweise sechs), übereinander angeordneten, horizontalen Ebenen die Fliessgeschwindigkeit und berechnet daraus, verknüpft mit dem Flüssigkeitsniveau, den Durchfuss sehr genau. Die Verringerung des Gerinnequerschnitts aufgrund einer Ausformung einer Trockenwetterrinne führt zur Erhöhung der Fliessgeschwindigkeit bei kleinen Durchflüssen, zur Erhöhung der Messgenauigkeit und auch zur Reduzierung von Ablagerungen am Gerinneboden. Funktionsprinzip und Bauform der Ultraschallwandler erfordern idealerweise sich parallel gegenüberstehende Gerinnewände. Zur Gewährleistung einer möglichst ruhigen, laminaren Strömung im Messgerät, erfolgt der Übergang zwischen unterschiedlichen Gerinnequerschnitten mittels einer speziell geformten Transformationsstrecke.

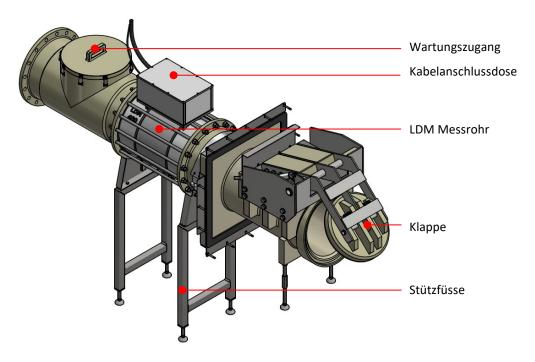


Abbildung 8: Teilgefüllte LDM-gesteuerte Abflussregelung, Klappe offen

4.3 Quetschventil vollgefüllt

Als Alternative zur Regelklappe kann auch ein pneumatisch gesteuertes Quetschventil eingesetzt werden. Die Durchflussmessung erfolgt in dieser Konfiguration mittels MID (magnetisch-induktive Durchflussmessung), welche vorzugsweise bei vollgefüllten Leitungen zum Einsatz kommt.

Vorteile von Quetschventilen gegenüber herkömmlichen Plattenschiebern sind:

- Quetschventil ermöglichen Entlüftung im Rohrscheitel, wodurch keine für die Durchflussmessung störende Luftblase in der Regelstrecke entsteht
- Regelt hochgenau mit k\u00fcrzesten Nachstellzeiten und ohne Laufzeitbegrenzung
- Pneumatikantrieb in der nassen ATEX-Umgebung anstelle Elektroantrieb
- Kompakte Durchflussmess- und Regelanlage inkl. Beruhigungsstrecken mit kleinstem Platzbedarf
- Drosselt bei Netz- oder Geräteausfall mit einem Notfallprogramm weiter
- Ist wartungsfreundlich und kann zur Reinigung ohne Werkzeug geöffnet werden

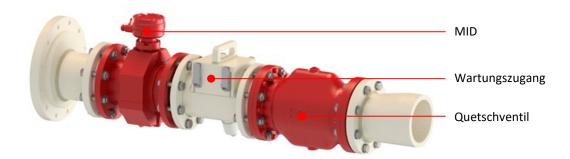


Abbildung 9: Vollgefüllte MID-gesteuerte Abflussregelung mit Quetschventil

4.4 Quetschventil teilgefüllt

Anstelle der MID kann die Messtelle auch mit einer LDM ausgerüstet werden. Die Vorteile des Quetschventils und die Charakteristiken des LDM ist in den vorherigen Kapitel bereits beschrieben.

Abbildung 10: Teilgefüllte LDM-gesteuerte Abflussregelung mit Quetschventil

4.5 Nass aufgestellt, offene Bauweise

Der Begriff «Nass aufgestellt» bedeutet, dass die Flüssigkeit frei aus dem Mess- und Regelsystem in das umgebende Schachtbauwerk abfliessen kann.

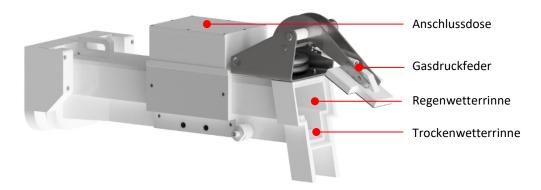


Abbildung 11: Nass aufgestellte teilgefüllte pneumatische Abflussregelung, Klappe offen

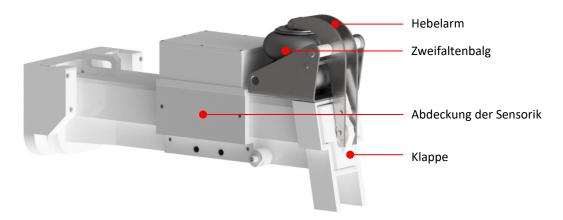


Abbildung 12: Nass aufgestellte teilgefüllte pneumatische Abflussregelung, Klappe geschlossen

4.6 Trocken aufgestellt, geschlossene Bauweise

Durch die komplette Kapselung aller im Schacht befindlichen Komponenten des Mess- und Regelsystems kann dieses trocken im Schacht aufgestellt werden. Es gelangt also keine Flüssigkeit aus der zwischen Zu- und Ablauf montierten Kapsel in das umgebende Schachtbauwerk, so dass dieses weitgehend frei von aggressiven Gasen und Flüssigkeiten bleibt.

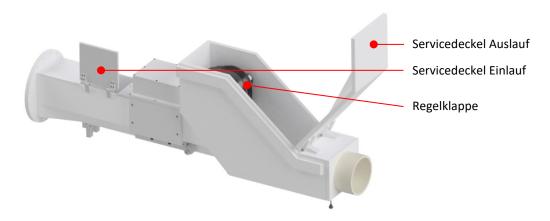


Abbildung 13: Nass aufgestellte teilgefüllte pneumatische Abflussregelung, Klappe offen

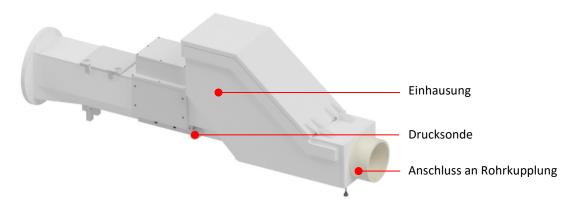


Abbildung 14: Nass aufgestellte teilgefüllte pneumatische Abflussregelung, Klappe geschlossen

5 Druckluft

Die Regelklappe der pneumatischen Abflussregelung wird mit Druckluft betrieben. In den folgenden Unterabschnitten werden die Komponenten beschrieben.

5.1 STEBair Kompressoren

Für die Bereitstellung von Druckluft werden ölfreie Kompressoren eingesetzt. Bei Bedarf können auch Kompressoren in geräuscharmer Ausführung verwendet werden. Für einen langen und störungsfreien Betrieb sind regelmässige Wartungen nach Betriebsanleitung sowie die Reinigung des Ansaugbereichs und der Kühlluftführungen wichtige Voraussetzungen. Die Entwässerung des Luftbehälters von Kondensat sollte mindestens alle drei Monate vorgenommen werden. Die Laufzeitüberwachung und die Entwässerung können auf Wunsch automatisch erfolgen. Bei dieser automatischen Entwässerung können die Tageszeit sowie die Entwässerungsdauer eingestellt werden.

Grundsätzlich gibt es drei Ausführungen der öl- und wartungsfreien STEBair Kompressoren.

STEBair silenzio Mini

STEBair silenzio Standard

STEBair silenzio Grande

Abbildung 15: Bauformen der Kompressoren der pneumatischen Abflussregelung

5.2 Abgesetzte Regeleinheit

Beträgt die Entfernung zwischen PNA-Regelorgan und PNA-Steuerkasten mehr als 15 Meter, wird das Regelventil in einer separaten Box möglichst nah am Regelorgan, aber ausserhalb des Ex-Bereichs platziert. Diese Box enthält ausser dem Regelventil auch eine 24VDC Versorgung. Für den Einsatz innerhalb der Ex-Zone ist das System in ATEX-Ausführung für Zone 2 erhältlich.

Abbildung 16: Abgesetzte Regeleinheit

6 Lieferumfang

- Komplett, gemäss Kundenspezifikation, vormontierte pneumatische Abflussregelung
 - o Inkl. Adapterelemente für die Anschlüsse an Kundenseitige Installation
- Dazugehörige Messumformer
- Verbindungskabel zwischen Abflussregelung und Messumformer

•

6.1 Optional

- Abgesetzte Regeleinheit
- Kompressor
- Notdrosseleinheit

•

7 Technische Daten

Die Konfiguration für die pneumatische Abflussregelung wird jeweils den Kundenbedürfnissen angepasst. Aufgrund der breit gefächerten Liefermöglichkeiten werden folgend nur die wichtigsten allgemein gültigen technischen Daten gelistet.

Messbereich 0,2 – 5000 l/s (abhängig von der System-Nennweite)

Regelbereich ab 0,2 l/s

Nennweiten 100 mm – 1500 mm

Werkstoffe Polypropylen; Metall V4A oder nach Anforderung

Dichtungsmaterial EPDM

Temperatur 0 – 45 °C

pH- Bereich 6-9Schutzart IP 68

Druckluftversorgung Kompressor mit automatischer Entwässerung

Spannungsversorgung 230 V / 50 Hz / 10 A

Zur Standardkonfiguration gehört ein Modem für den Aufbau einer Internetverbindung mittels aller Mobilfunknetze bis 4G/LTE und VPN-Technologie.

Folgende digitalen und analogen Ein- und Ausgänge sowie Kommunikationsprotokolle können verwendet und konfiguriert werden:

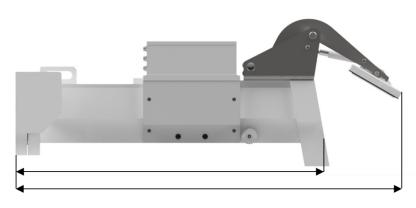

	Тур	Beschreibung
	4 – 20 mA	Momentan-Durchfluss
Signalausgänge	4 – 20 mA	Eingestellter Regelwert
Signalausgänge	Digital	Mengenzähler
	Digital	2 x Störung
	4 – 20 mA	Sollwert des Reglers
	Digital	Auf (Fern)
Signaleingänge	Digital	Zu (Fern)
	Digital	Automatik
	Digital	Manuell Start Reinigung
	RS 485	ModBus RTU/ASCII
Kommunikations-	RS232	
protokolle	Ethernet	ModBus TCP
	VPN	Über Internet / Fernwartung mit STEBATEC

Tabelle 3: Übersicht Datenaustausch

8 Mögliche Baugrössen

8.1 Teilgefüllte nass aufgestellte Bauweise

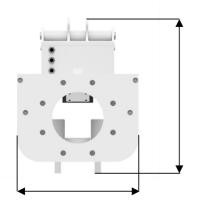


Abbildung 17: Mass Bild Teilgefüllte nass aufgestellte Bauweise

NW	Gesamtlänge bei offener Klappe	Gesamtlänge bei geschlos- sener Klappe	Gesamtlänge bei verkürz- ter Bauweise und offener Klappe	Breite	Höhe
200	1800	1460	1450	470	560
250	2180	1750	1570	530	700
300	2440	2000	1650	580	800
350	2780	2290	1800	650	860
400	3360	2580	2190	695	1000
500	4020	3160	2490	780	1200
600	4650	3720	2760	870	1450
700	5300	4300	3060	950	1795
800	6070	4970	3330	1050	2000

Tabelle 4: Masstabelle [mm] Teilgefüllte nass aufgestellte Bauweise

Bei vorgesetztem Schieber ist ein zusätzlicher Platzbedarf nötig. Weitere Grössen, verkürzte Ausführungen und Lösungen für spezielle hydraulische Gegebenheiten auf Anfrage.

8.2 Teilgefüllte trocken aufgestellte Bauweise

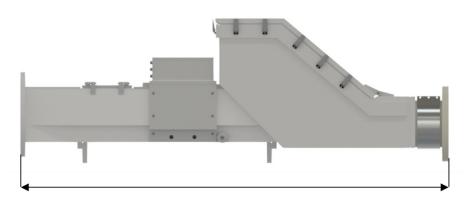


Abbildung 18: Mass Bild Teilgefüllte trocken aufgestellte Bauweise

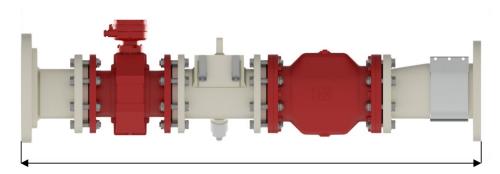
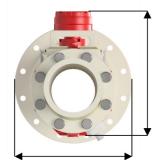
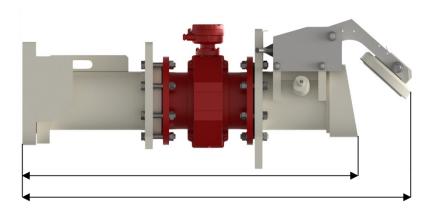

NW	Gesamtlänge	Gesamtlänge bei verkürzter Bauweise	Breite	Höhe
200	2120	1690	450	700
250	2670	1980	520	790
300	2950	2080	550	880
350	3440	2370	620	950
400	3990	2720	700	1150

Tabelle 5: Masstabelle [mm] Teilgefüllte trocken aufgestellte Bauweise

Bei vorgesetztem Schieber ist ein zusätzlicher Platzbedarf nötig. Weitere Grössen, verkürzte Ausführungen und Lösungen für spezielle hydraulische Gegebenheiten auf Anfrage.

8.3 MID-gesteuerte pneumatische Abflussregelung mit Quetschventil




Abbildung 19: Mass Bild MID-gesteuerte pneumatische Abflussregelung mit Quetschventil

NW	Gesamtlänge	Gesamtlänge bei verkürzter Bauweise	Breite	Höhe
125	1545	810	310	420
150	1740	930	340	420
200	2125	1120	400	480
250	2495	1340	460	530
300	2880	1530	510	580

Tabelle 6: Masstabelle [mm] MID-gesteuerte pneumatische Abflussregelung mit Quetschventil

8.4 MID-gesteuerte pneumatische Abflussregelung

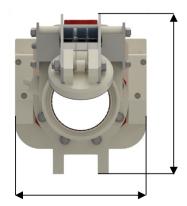


Abbildung 20: Mass Bild MID-gesteuerte pneumatische Abflussregelung

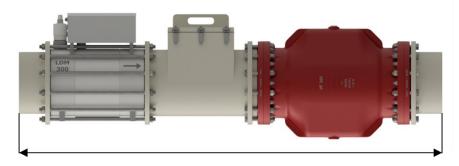

NW	Gesamtlänge bei offener Klappe	Gesamtlänge bei geschlos- sener Klappe	Gesamtlänge bei verkürz- ter Bauweise und offener Klappe	Breite	Höhe
80	830	640	-	295	450
100	935	735	-	295	490
150	1170	960	1120	395	520
200	1475	1255	1260	480	570
250	1815	1565	1510	520	720
300	2200	1860	1770	575	810
350	2415	2045	1870	645	860
400	2700	2300	2040	720	910
500	3325	2825	2400	850	1080

Tabelle 7: Masstabelle [mm] MID-gesteuerte pneumatische Abflussregelung

Bei vorgesetztem Schieber ist ein zusätzlicher Platzbedarf nötig. Weitere Grössen, verkürzte Ausführungen und Lösungen für spezielle hydraulische Gegebenheiten auf Anfrage.

8.5 LDM-gesteuerte pneumatische Abflussregelung mit Quetschventil

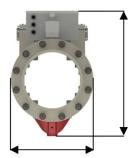


Abbildung 21: Mass Bild LDM-gesteuerte pneumatische Abflussregelung mit Quetschventil

NW	Gesamtlänge	Gesamtlänge bei ver- kürzter Bauweise	Breite	Höhe
150	1980	1440	350	470
200	2470	1700	400	540
250	2940	1970	460	620
300	3420	2230	510	690

Tabelle 8: Masstabelle [mm] LDM-gesteuerte pneumatische Abflussregelung mit Quetschventil

Bei gleichbleibendem Querschnitt und Gefälle des Zulaufrohrs kann eine verkürzte Bauweise mit Servicedeckel verwendet werden.

9 HMI / Bedienung

Die Bedienung der pneumatischen Abflussregelung kann einerseits über das Touch-Panel vor Ort vorgenommen werden, oder über ein Web-Interface. Dieses wird im lokalen Netzwerk oder optional über das Internet aufgerufen.

Die Anzeigen unterscheiden sich, Peripheriebedingt, in der Darstellung voneinander. Die Funktionalität der Software ist jedoch bei beiden Versionen dieselbe.

9.1 Ansicht Touchpanel

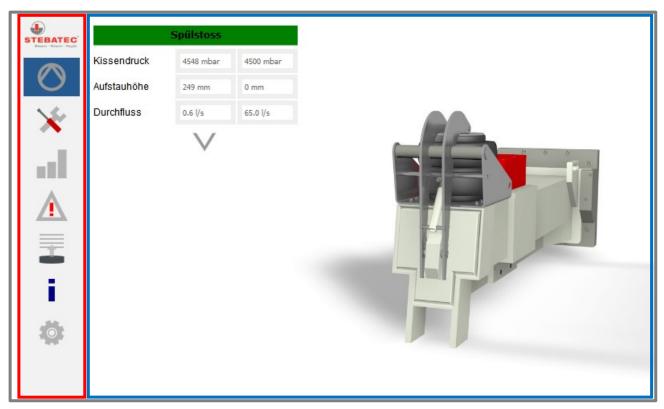


Abbildung 22: Grundbild Touchpanel

Auf der linken Seite (roter Rahmen) ist die Navigationsleiste des Bedienpanels abgebildet. Auf der rechten Seite (blauer Rahmen) ist die jeweilige Detailansicht eines Menü- oder Untermenüpunkts abgebbildet.

9.2 Ansicht WEB Interface

9.2.1 Normalzustand

Das WEB-Interface ist ähnlich aufgebaut wie das HMI auf dem Touchpanel. Auf der linken Bildschirmseite ist immer das Navigationsmenü eingeblendet und auf der rechten Seite die Details zum aktuell ausgewählten Menüpunkt.

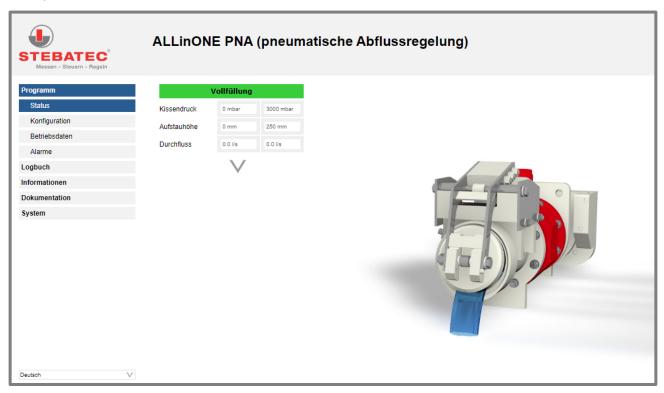


Abbildung 23: Grundbild WEB Interface

10 Installation und Inbetriebnahme

Die Installation und Inbetriebnahme der STEBATEC Produkte erfolgt ausschliesslich durch Monteure der STEBATEC oder von einem durch STEBATEC qualifizierten Partner.

10.1 Erstinbetriebnahme

Die Erstinbetriebnahme erfolgt, nachdem das STEBATEC Montageteam die Installation abgeschlossen und vorbereitet hat. Gemäss Checkliste werden die vereinbarten Leistungen der Anlage mit dem Betreiber und dem Ingenieurbüro geprüft und abgenommen. Anschliessend erfolgt eine Schulung für die zu instruierenden Personen.

10.2 Konfiguration

Die Parametrierung der Werkseinstellungen erfolgt grösstenteils während der Erstinbetriebnahme und Tests im Hydrauliklabor der STEBATEC. Weitere Parameter werden gemeinsam vor Ort mit dem Kunden definiert und eingestellt.

11 Wartung

Die Produkte der STEBATEC sind so konstruiert, dass diese ohne Spezialwerkzeuge für den Ein- und Ausbau bei Wartungsarbeiten auskommen.

11.1 Reinigung

Der Gebrauch von Reinigungsmittel muss an nicht sichtbaren Testflächen oder an gleichwertigen Mustermaterialien getestet werden. STEBATEC übernimmt keine Haftung für durchgeführte «Testreinigungen».

Je nach Verschmutzungsgrad ist das Gerät mindestens zwei Mal pro Jahr, wenn möglich auszubauen, und zu reinigen.

11.1.1 Reinigungsempfehlung

Es soll nur mit reinem Wasser gereinigt werden. Sind die Verschmutzungen erhöht, dann können geringe Mengen von neutralen Reinigungsmitteln beigemischt werden. Es kann mit Schwämmen oder Lappen manuell nachgeholfen werden, aber keinesfalls scheuernde oder abrasive Hilfsmittel benutzen. Wenn Reinigungsmittel eingesetzt wurden, dann muss auf jeden Fall mit reinem Wasser nachgespült werden.

Auf folgende Mittel ist auf jeden Fall zu verzichten:

- Lösungsmittel
- Abrasive Flüssigkeiten
- Stark saure oder basische Mittel
- Reinigungsmittel welche eine unbekannte Zusammensetzung haben

11.2 Kompressor

Die eingesetzten Kompressoren sind weitgehend wartungsfrei. Für einen einwandfreien Betrieb muss in Regelmässigen Abständen der Dichtungssatz ersetzt werden.

Ein präventiver Ersatz ist nach 5000 Betriebsstunden oder spätestens nach 7 Betriebsjahren fällig. Wenn die Tankfüllungszeit vor diesen Werten um ca. 15-20% zugenommen hat, so müssen die Dichtungen auch ersetzt werden.

11.3 Aus- und Einbau

Vorsicht

Schutzlackierung der gesamten Mess- und Regeleinrichtung vor Beschädigungen schützen.

Damit der Aus- und Wiedereinbau der pneumatischen Abflussregelung reibungslos funktioniert, sind folgende Punkte zu beachten:

- Zur sicheren Montage in Schächten und Kanälen wird eine Hebeeinrichtung empfohlen (z.B. Seilwinde, Flaschenzug oder Kran). Dadurch kann das Betriebspersonal das Gerät sicher im Kanal bzw. Schacht manövrieren.
- Zu starkes Aufsetzen oder Anstossen des Gerätes ist zu vermeiden, dadurch entstehen Schäden an der Schutzlackierung und am System. Kabel und Schläuche sind vor Zug bzw. Abknicken zu sichern.
- Bei sichtbaren Schäden wird dringend empfohlen, Fotos der Schäden aufzunehmen und STEBATEC umgehend informieren. Scharfe Kanten oder andere spitze Gegenstände, die in den Kanal hineinragen, sind vorgängig zu entfernen.
- Bei Verwendung einer Einhängeadaption wird das Gerät bei der ersten Montage exakt ausgerichtet.
 Jeder weitere, wartungsbedingte Ein- und Ausbau kann werkzeuglos erfolgen. Eine erneute Ausrichtung ist normalerweise nicht erforderlich, die Ausrichtung muss jedoch kontrolliert werden.

Beschreibung des Arbeitsschritts

Visualisierung des Arbeitsschritts

In der Abbildung rechts ist die Situation vor dem Ausbau dargestellt.

Abbildung 24: Situation vor Ausbau der PNA

Das Hebezeug wird an den dafür vorgesehenen Aufhängungen angeschlagen und die Last der PNA aufgenommen. Die PNA ist ein wenig aus der Einhängung angehoben.

Abbildung 25: Last der PNA aufnehmen

Die Befestigungen der PNA werden gelöst.

Die PNA-Verkeilung in der Aufhängeadaption werden gelöst.

Die PNA wird nach oben gezogen.

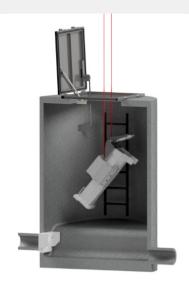


Abbildung 26: Lösen der Befestigungen der PNA

Beschreibung des Arbeitsschritts

Visualisierung des Arbeitsschritts

Die PNA wird aus dem Schacht gehoben.

Der Einbau erfolgt sinngemäss in umgekehrter Reihenfolge.

Abbildung 27: Herausheben der PNA aus dem Schacht

Tabelle 9: Ausbau der PNA aus Schacht

Vorsicht

Wenn die PNA Stützfüsse hat, werden diese bei der Erstmontage justiert, so dass die PNA exakt horizontal ausgerichtet ist. Dies ist für die Messgenauigkeit essenziell.

Bei jedem Wiedereinbau muss die Lage mit einer Wasserwaage kontrolliert werden. Bei Bedarf sind die Stützfüsse zu nachjustieren.

Wenn die PNA mittels einer Einhängeadaption montiert wird, so muss folgender Montageablauf beachtet werden:

- PNA waagrecht platzieren
- Vorsichtig in die Einhängeadaption einfahren, ohne zu verkeilen
- PNA absenken, bis die obere Kante der Keilplatte mit der Einhängeadaption bündig ist
- Waagrechte Lage mit Wasserwaage kontrollieren und eventuell Lage mit Stützfüssen korrigieren

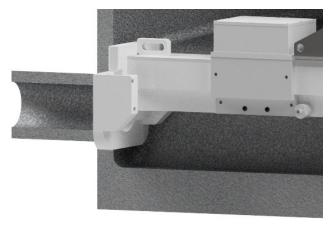


Abbildung 28: Einhängeadapter mit montierter PNA

12 Notfall

Bei Netz- / Spannungsausfall und wenn entsprechend konfiguriert bei Systemstörung, wird die Regelklappe der pneumatischen Abflussregelung durch eine Notdrossel oder Notöffner in die vordefinierte Position gestellt.

12.1 Notdrosselung

Achtung

Der definierte Öffnungswinkel kann gehalten werden, solange der Kesseldruck des Kompressors grösser als der eingestellte Soll-Kissendruck ist.

Im Notfall wird die Regelklappe, mit dem am Druckminderer eingestellten Druck, in die entsprechende Position gebracht.

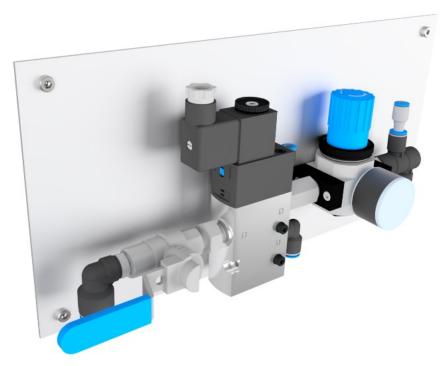


Abbildung 29: Notdrossel mit Absperrhahn und Druckminderer

Der eingestellte Druck für den Notbetrieb wird auf dem Manometer angezeigt.

12.2 Notöffnung

Im Notfall wird der Kissendruck an der Regelklappe abgelassen, so dass die Klappe permanent vollständig geöffnet bleibt.

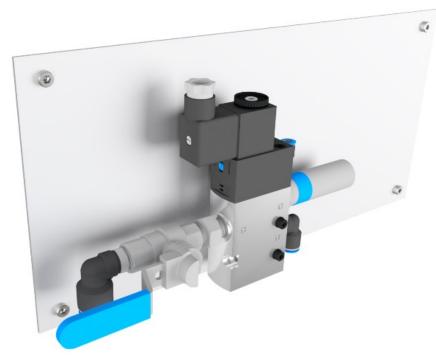


Abbildung 30: Notdrossel mit Absperrhahn ohne Druckminderer

12.3 Notbetrieb bei Netzausfall und Gerätestörung

Achtung

Wenn der Absperrhahn der Notdrosseleinheit geschlossen ist, so ist die Bewegung der Regelklappe blockiert.

Die Notstellung wird aus dem Automatikmodus aktiviert, wenn die notwendigen Messsignale nicht mehr vorhanden sind. Mittels der Handsteuerung kann die PNA in Notfällen dennoch bedient werden.

Im stromlosen Zustand ist die Klappe bei normaler Ausführung geöffnet. Dies kann für manche Anwendungen nicht geeignet sein, da bei Stromausfall der Durchflusswert überschritten werden könnte. Die Notdrossel hält bei Stromausfall den eingestellten Regeldruck aufrecht, dabei wird die Klappe in eine voreingestellte, statische Stellung gebracht. Sollte die Klappe bewegt werden, muss der Absperrhahn wieder in die horizontale Richtung gedreht werden.

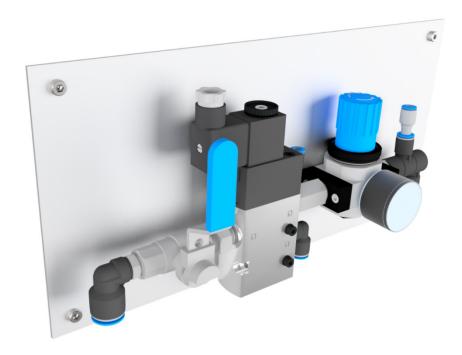


Abbildung 31: Notdrossel mit Absperrhahn (geschlossen) und Druckminderer

13 Glossar

Abkürzung / Begriff	
Al	Analog Input / Analoger Eingang
ALLinONE	ALLinONE ist eine Produktelinie von STEBATEC, welche es ermöglicht, verschiedene Teile einer Anlage zu steuern und/oder zu regeln. Diese wird mit einer standardisierten Software betrieben und ist modular aufgebaut.
AO	Analog Output / Analoger Ausgang
ATEX	Französische Bezeichnung «Atmosphères Explosibles» und bezeichnet zwei Richtlinien für Produkte und deren Betrieb in explosiven Umgebungen.
Default Gateway	Im Zusammenhang des Internetprotokolls (IP) leitet ein Default Gateway alle Netzwerkanfragen, deren Empfängeradresse nicht in einem Subnetz enthalten ist, an ein anderes Subnetz weiter. Speziell wird als "Default Gateway" der Router für den Zugang in andere Netze (wie z.B. das Internet) bezeichnet.
DI	Digital Input / Digitaler Eingang
DN	Abkürzung für die französische Bezeichnung «diamètre nominal» mit der Bedeutung des inneren Durchmessers eines Rohres oder Schlauchs
DO	Digital Output / Digitaler Ausgang
ESD	Electrostatic discharge / Elektrostatische Entladung
	Vermeiden von Aufladungen und schnellen Entladungen \rightarrow Arbeitsplatz entsprechend ausrüsten
Flag	Flag ist eine binäre Variable des Typs Boolean (True / False)
Н	Füllstandhöhe
нмі	Human-Machine Interface
I/O	Input / Output
IP	International Protection
	Die Schutzart gibt die Eignung von elektrischen Betriebsmitteln für verschiedene Umgebungsbedingungen an, zusätzlich den Schutz von Menschen gegen potenzielle Gefährdung bei deren Benutzung.
IP-Adresse	Ist eine Adresse von Computern in Netzwerken, welche mit Hilfe des Daten- übertragungsstandard IP (Internet-Protokoll) basiert.
LDM	(Ultraschall-)Laufzeit-Differenz Messverfahren für die Durchflussmessung von flüssigen Medien

Abkürzung / Begriff	
Messaufnehmer	Die Messaufnehmer der LDM bestehen aus den Ultraschallwandlern, der Füllstandsmessung und dem Vollfüllsensor.
Messumformer TF/ LDM	Messumformer teilgefüllt / Laufzeitdifferenzmessung
	Gehäuse mit eingebauter Messelektronik und Kommunikation zu anderen Steuerungen oder Leitsystemen.
MID	MID ist die Abkürzung für «magnetisch-induktive Durchflussmessung», welches auf dem elektromagnetischen Induktionsgesetz basiert.
Modbus	Datenübertragungsstandard (-protokoll) für die Datenübertragung in Industrie und Technik.
Modbus TCP	Betriebsart von Modbus, bei welcher die Daten mittels TCP (Standard für die Übertragung von Daten im Internet) übertragen werden.
MR	MR ist die Abkürzung für «Mengenregelung». Dies bedeutet, dass der Durchfluss auf einen fixen Wert geregelt werden soll.
Netzwerkeinstellungen	Die Netzwerkeinstellungen des Messumformers umfassen die IP-Adresse, die Subnetzmaske in Suffix-Schreibweise und der IP-Adresse des Gateways.
Niveausonde	Messgerät, um die Füllstandhöhe der Flüssigkeit in der LDM zu bestimmen.
PE	Protective Earth / Schutzerdung
PN	Pressure Nominal
	Dabei bedeutet «PN 1», dass der zulässige höchste Druck eines Fluids in einem Rohr höchstens 1 Bar betragen darf, sofern die Temperatur des Fluids 20°C beträgt.
PNA	Pneumatische Abflussregelung der Firma STEBATEC AG, welche zur Regelung von Abflussmengen von Wasser, Abwasser und Rohabwasser in Rohren oder Kanälen eingesetzt werden kann.
Q	Durchfluss [m³/s]
SPS	Speicherprogrammierbare Steuerung
Subnetz	Als Subnetz wird beim Internetprotokoll (IP) ein Teilnetz bezeichnet, welche bestimmte, aufeinanderfolgende Adressen beinhaltet.
Suffix-Schreibweise	Die Suffix-Schreibweise im Zusammenhang mit Subnetzen dient dazu, Subnetze mit einer einzelnen Zahl effizient zu beschrieben.
TF	Teilfüllung

Abkürzung / Begriff	
	Dieser Begriff wird im Zusammenhang mit dem Begriff der pneumatischen Abflussregelung (Abkürzung PNA) verwendet, welche ebenfalls von der Firma STEBATEC hergestellt und vertrieben wird.
Ultraschallsensor	Geräte, mit welchen Ultraschallwellen (Schallwellen mit einer höheren Frequenz als 16 kHz) erzeugt oder aufgezeichnet werden können.
v.M.	vom Messwert
	Angabe für die Messgenauigkeit, bezogen auf den gemessenen Wert (im Unterschied zur Messgenauigkeit bezogen auf den grössten gemessenen Wert).
v1 - v10	Geschwindigkeit der Flüssigkeit, welche mittels der Messpfade 1 bis 10 durch die entsprechenden Ultraschallsensoren der LDM gemessen wird.
VF	VF ist die Abkürzung für «vollgefüllt» respektive «Vollfüllung». Das bedeutet, dass das ganze Innere des Messrohrs der Durchflussmessung mit Flüssigkeit gefüllt ist. Es ist zu beachten, dass die MID (Erklärung siehe oben) für eine optimale Messung ein vollgefülltes Messrohr benötigt.
V _m	Gemittelte Geschwindigkeit des Mediums [m/s] welche im Messrohr der LDM gemessen wird.
VPN	VPN ist die Abkürzung des englischen Begriffs «Virtual Private Network», auf Deutsch «virtuelles privates Netzwerk». Dabei wird in einem öffentlichen Netzwerk mit Hilfe von Verschlüsselungstechnik und Zugriffskontrolle versucht, ein Netzwerk zu erstellen, welches vor unbefugtem Zutritt sicher ist.
VR	VR ist die Abkürzung für «Vollfüllregelung»
webUI	Integrierte Webvisualisierung, welches mittels eines Webbrowsers geöffnet werden kann.

Tabelle 10: Glossar

14 Abbildungsverzeichnis

Abbildung 1: PNA mit MID und QV	7
Abbildung 2: Prinzip der Betriebsarten	8
Abbildung 3: Beispielhafte Darstellung einer MID-gesteuerten Pneumatischen Abflussregelug (PNA)	9
Abbildung 4: Vollfüllniveau MID	10
Abbildung 5: Vollfüllniveau MID mit QV	11
Abbildung 6: Vollgefüllte MID-gesteuerte Abflussregelung, Klappe offen	15
Abbildung 7: Vollgefüllte MID-gesteuerte Abflussregelung, Klappe geschlossen	16
Abbildung 8: Teilgefüllte LDM-gesteuerte Abflussregelung, Klappe offen	16
Abbildung 9: Vollgefüllte MID-gesteuerte Abflussregelung mit Quetschventil	17
Abbildung 10: Teilgefüllte LDM-gesteuerte Abflussregelung mit Quetschventil	17
Abbildung 11: Nass aufgestellte teilgefüllte pneumatische Abflussregelung, Klappe offen	18
Abbildung 12: Nass aufgestellte teilgefüllte pneumatische Abflussregelung, Klappe geschlossen	18
Abbildung 13: Nass aufgestellte teilgefüllte pneumatische Abflussregelung, Klappe offen	19
Abbildung 14: Nass aufgestellte teilgefüllte pneumatische Abflussregelung, Klappe geschlossen	19
Abbildung 15: Bauformen der Kompressoren der pneumatischen Abflussregelung	20
Abbildung 16: Abgesetzte Regeleinheit	21
Abbildung 17: Mass Bild Teilgefüllte nass aufgestellte Bauweise	24
Abbildung 18: Mass Bild Teilgefüllte trocken aufgestellte Bauweise	25
Abbildung 19: Mass Bild MID-gesteuerte pneumatische Abflussregelung mit Quetschventil	26
Abbildung 20: Mass Bild MID-gesteuerte pneumatische Abflussregelung	27
Abbildung 21: Mass Bild LDM-gesteuerte pneumatische Abflussregelung mit Quetschventil	28
Abbildung 22: Grundbild Touchpanel	29
Abbildung 23: Grundbild WEB Interface	30
Abbildung 24: Situation vor Ausbau der PNA	34
Abbildung 25: Last der PNA aufnehmen	34
Abbildung 26: Lösen der Befestigungen der PNA	34
Abbildung 27: Herausheben der PNA aus dem Schacht	35
Abbildung 28: Einhängeadapter mit montierter PNA	35
Abbildung 29: Notdrossel mit Absperrhahn und Druckminderer	36
Abbildung 30: Notdrossel mit Absperrhahn ohne Druckminderer	37
Abbildung 31: Notdrossel mit Absperrhahn (geschlossen) und Druckminderer	38

15 Tabellenverzeichnis

Tabelle 1: Kennzeichnung von Hinweisen	5
Tabelle 2: Abkürzungen Gerätevarianten	6
Tabelle 3: Übersicht Datenaustausch	23
Tabelle 4: Masstabelle [mm] Teilgefüllte nass aufgestellte Bauweise	24
Tabelle 5: Masstabelle [mm] Teilgefüllte trocken aufgestellte Bauweise	25
Tabelle 6: Masstabelle [mm] MID-gesteuerte pneumatische Abflussregelung mit Quetschventil	26
Tabelle 7: Masstabelle [mm] MID-gesteuerte pneumatische Abflussregelung	27
Tabelle 8: Masstabelle [mm] LDM-gesteuerte pneumatische Abflussregelung mit Quetschventil	28
Tabelle 9: Ausbau der PNA aus Schacht	35
Tabelle 10: Glossar	41